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A SUPERNODAL CHOLESKY FACTORIZATION ALGORITHM FOR 
SHARED-MEMORY MULTIPROCESSORS 

Esmond G. Ng 
Barry W. Peytori 

Abstract 

This paper presents a new left-looking parallel sparse Cholesky fac,torization al- 
gorithm for shared-memory MIMD multiprocessors. The algorithm is particularly 
well-suited for vector supercomputers with multiple processors, such as the Cray 
Y-MP. The new algorithm uses supernodes in the Cholesky factor to improve per- 
formance by reducing indirect addressing and memory traffic. Earlier factorization 
algorithms have also used supernodes in this manner. The new algorithm, how- 
ever, also uses supernodes to reduce the number of system synchronization calls, 
often by an order of magnitude or tnore in practice. Experimental results on a 
Sequent Balance 8000 and a Cray Y-MP demonstrate the effectiveness of thc new 
algorithm. On eight processors of a Cray Y-MP, the new routine performs the fac- 
torization at rates exceeding one Gflop for several test problems from the Harwell 
Boeing test collection, none of which are exceedingly large by current standards. 
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1. Introduction 

Large sparse symmetric positive definite systems arise frequently in many scientific 

and engineering applications. One way to solve such a system is to use Cholesky 

factorization. Let A be a symmetric positive definite matrix. The Cholesky factor 

of A,  denoted by L ,  is a lower triangular matrix with positive diagonal such that 

A = L L T .  When A is sparse, fill occurs during the factorization; tha t  is, some of 
the zero elements in A will become nonzero elements in L .  In order t o  reduce time 

and storage requirements, only the nonzero positions of L are stored and operated on 

during sparse Cholesky factorization. Techniques for accomplishing this task and for 
reducing fill have been studied extensively (see [16] for details). In this paper we restrict 

our attention to the numerical factorization phase. We assume that the preprocessing 
steps, such as reordering to reduce fill and symbolic factorization to  set up the compact 

data  structure for L ,  have been performed. Details on the preprocessing can be found 

in [16]. 
In recent years, because of advances in computer architectures, there has been much 

interest in the solution of large sparse linear systems on high performance computers. 

In particular, there have been investigations into the solution of such problems on com- 

puters with multiple processors [18]. Basically, multiprocessor systems can be classified 
by how their memory is organized. In a shared-memory multiprocessor system, every 

processor has direct access to  a globally shared memory. In this case, the processors 

can read from or write into the same memory location simultaneously. Of course, for 

da ta  integrity, writing into the same memory location at any time by more than one 

processor must be synchronized. Examples of shared-memory multiprocessor systems 

include the Cray Y-MP, Encore Multimax, Sequent Balance, and Sequent Symmetry. 

Another way of organizing the memory in a multiprocessor system is to  give each pro- 

cessor its own memory to which the owner alone has direct access. For one processor 
to  access data  in another processor’s memory, the two processors must communicate 

with each other, for example, by message passing. Examples of distributed-memory 

multiprocessor systems include the NCUBE 3200 and 6400, and the Intel iPSCI2 and 

iPSC/iSSO. It should be noted that there are also hybrid multiprocessor systems in 

which both local and shared memory are available, such as the BBN Butterfly. 

In this paper, we are concerned with the factorization of a sparse symmetric positive 

definite matrix A on a shared-memory multiprocessor system. This paper can be re- 

garded as a sequel to  [15], in which a parallel implementation of a sequential algorithm 

from [16] was described. We will show however that the number of synchronization 

operations (Le., locking and unlocking operations) required by the parallel algorithm 

in [15] is relatively high; it is proportional t o  the number of nonzeros in the Cholesky 

factor L .  The object of our paper is to describe a new version of the algorithm that 

reduces the amount of synchronization overhead by exploiting the supernodal struc- 

ture found in the sparsity pattern of L .  (The notion of supernodes will be introduced 
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in Section 3.) The role of supernodes in improving both left- and right-looking sparse 

Cholesky factorization algorithms is well documented [1,3,5,12,25,28]. The new parallel 

algorithm uses supernodes to  reduce memory traffic and indirect indexing operations 

as previous algorithms have done, which is particularly important on vector supercom- 

puters [1,3,5]. The primary contribution of the payer is the way supernodes are used 

to improve the parallel efficiency of a left-looking algorithm. 
,4n outline of the paper is as follows. Section 2 reviews the sequential and parallel 

factorization algorithms discussed in [15]. Section 3 describes the notion of supern- 

odes and their usefulness in a sequential sparse Cholesky factorization algorithm. A 
parallel supernodal Cholesky factorization algorithm will be presented in Section 3 as 

well. Section 4 provides experimental results on an IBM RS/6000, a Cray Y-MP, and 

a Sequent Balance 8000. Finally, Section 5 contains a few concluding remarks and 

discusses possible futnre work. 

2. Background material 

2.1. Notation and terminology 

Assume that A is an n x n symmetric and positive definite matrix, and let L denote the 

Cholesky factor of A .  We use L,,j and L;,, to  represent respectively the j - t h  column 

and i-th row of 1;. The sparsity structures of column j and row i of L (excluding the 

diagonal entry) are denoted by Struct(L,,,j) a,nd Struct(Li,,), respectively. That is, 

Struct(L,j)  := {s > j : Zs,j # O}, 

Struct(L;,,) := ( t  < i : l; , t  # Q }  . 

Assume that ik,j f 0 and suppose that Ek,j is not the last nonzero in column j of 

L .  The function n.ezt(k , j )  returns the row index of the first nonzero beneath E k j  in 

the column L,j  [15]. If l k , 3  is the last nonzero in L,,j, then we define n e z t ( k , j )  to  be 

n+ 1. 

The two computational tasks occurring at  each step in the Cholesky factorization 

are scaling a vector and subtracting a multiple of a vector from another vector. These 

two tasks will be denoted by cdiv and crnod, respectively [14]. 

cd iv ( j ) :  
Ej,j c- ( a .  393 .)1/2 

for i = j -1- 1 to n do 

end for 
l i j  + a i , j / J j , j  
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Finally, if M is an m x n matrix, then [MI denotes the number of nonzero elements 

in M .  

2.2. Sequential sparse Cholesky factorization 

We begin our discussion by first reviewing a sequential general sparse Cholesky fac- 

torization algorithm, details of which can be found in [16]. The algorithm is column- 

oriented and is a left-looking algorithm. That is, when column L,,j is t o  be computed, 

the algorithm modifies column A,,j with multiples of the previous columns of L ,  namely 

Le+, 1 5 IC 5 j - 1. Of course, sparsity will be exploited when A is sparse. We will 

assume throughout that  the nonzeros of A and L are stored by columns. The sequen- 
tial factorization algorithm is given in Figure 2.1. This algorithm and its variations are 

widely used in many sparse matrix packages, such as SPARSPAK [7]. 

for j = 1 to n do 
for k E Str?ict(Lj,*) do 

end for 
cdiv( j )  

cmod(j,  k) 

end for 

Figure 2.1: A sequential sparse Cholesky factorization a.lgorithm. 

Since the algorithm in Figure 2.1 is column-oriented and the nonzeros of L are stored 

by columns, its implementation is quite straightforward except for the determination 

of the structure of row j of L (i.e., Struct(Lj,,)). Instead of computing the structure of 

every row of L prior to the factorization, the factorization algorithm itself can efficiently 

generate these sets during the factorization, as shown in Figure 2.2. For each column 

L, j ,  we maintain a set Sj of column indices, which will contain precisely the column 

indices belonging to  Struct(Lj,,) when the column LSr3 is computed. 

After L*,j has been Computed, j is inserted into S,, where q is the row index 

of the first nonzero beneath the diagonal in column j (i.e., q = nezt ( j , j ) ) .  When 
the algorithm is ready to compute it will examine S, to  find the columns of L 
needed to  modify A*,q. Among those columns it will find L*,j ,  and thus it will perform 
cmod(q , j )  as required. It is easy to  see that the next column of A that  L,,j will modify 
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for j = 1 to n do 

end for 
Sj t 0 

€or j = 1 to n do 
for k f Sj do 

cmod(j,  k) 
p t n e z t ( j , k )  
i €p  5 n then 

end if 
s, +- s, " V I  

end for 
cdiv( j )  
q +-- nez t ( j , j )  
if q 5 n then 

end if 
s, +--- s, u { j }  

end for 

Figure 2.2: A sequential sparse Cholesky factorization algorithm, with the generation 
of row structure. 
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is given by p = nez t (q , j ) .  Hence, the algorithm puts j in S,  for use when it later 

computes L*,p. More informally, immediately after L,j has been computed it begins 
“migrating” from one column of A to  another as determined by the values of 7 t e z t ( * , j )  

(or equivalently the structure of &). The columns visited by L*,j are exactly those 

that must be modified by L*,j. At any point during the factorization, Si n Sj = @j for 

i # j .  Consequently, the sets Sj (1 I. j 5 n)  can be stored economically as linked lists 

using a single integer array of length n. This is the primary reason for generating the 

sets Struct(Lj,,) in this manner. 

2.3. Sources of parallelism 

As indicated in [15], there are two sources of potential parallelism in sparse Cholesky 
factorization. The first one is in performing cmod operations with the same “updating” 

column. Suppose Struct(L,,j) = {il, i 2 ,  . . ., i,}, with j < il < i 2  < . . . < i,. When 

L * j  has been computed, columns il, i z ,  . . ., i, of A have to  be modified by L*,j. These 

cmod’s are independent: they can be performed simultaneously or in any order. Thus, 

if there are enough processors and if the nonzero entries of L*,j are available to  these 

processors, the operations crnod(il, j ) ,  cmod( iz , j ) , .  . ., cmod(i,, j )  can be performed 

concurrently. The independence of cmod’s using the same updating column but dif- 

ferent target columns has nothing to do with the sparsity of L;  indeed, they are the 

primary source of parallelism in a dense column-based factorization. 

Sparsity in L gives rise to  large-grained parallelism that is not available in a dense 

factorization. Consider columns L*,k and L * j  where j > k. We shall say that L,j  
depends on L*,k if L,,j cannot be completed until after L*,k  has been completed. When 

neither L,,j depends on L l , k  nor L * , k  depends on L * j ,  the two columns are said to  be 

independent of one another. The column dependencies are very simple when L is 

dense: since computation of L*,j requires modification of A*,j by a multiple of every 

column L * , k  where IC < j ,  L*,j depends on every such column I,*,+ To identify column 

dependencies in the sparse case, we introduce elimination trees. 
Consider the Cholesky factor L. For each column L*,j having off-diagonal nonzero 

elements, we define parent[j]  to  be the row index of the first off-diagonal nonzero in 

that column; that is, parent[j] = n e z t ( j , j ) .  For convenience, we define parent[ j ]  to 

be j when column L*,j has no off-diagonal nonzeros. The elimination forest of L is a 

graph 7 with {1,2, .  . . ,n} as its node set, and an edge connecting i and j if and only 

if j = parent[i] and i # j [21,26]. It is also easy to show that 7 is a tree if and only 

if the matrix A is irreducible. Without loss of generality, we will assume from now on 

that the given matrix A is irreducible, so that 7 is indeed an elimination tree. We 
assume familiarity with the standard terminology associated with rooted trees: e.g., 
root, parent, child, ancestor, and descendant. We use the notation 7 [ i ]  to denote the 
subtree rooted a t  node i; that  is, I[i] is a tree consisting of i and all of its descendants 

in T. 
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Figure 2.3: A matrix example defined on a 7 x 7 nine-point grid ordered by nested 
dissection. (each x and a refers t o  a nonzero in A and a fill entry in I;, respectively.) 

Consider the cxarnple in Figure 2.3, which contains the matrix and Cholesky factor 

associated with a 7 x 7 nine-point grid ordered by the nested dissection algorithm [13]. 
In the figure, each x is a nonzero entry in the matrix A ,  and each is a fill entry in 

the Cholesky factor L.  The reader may verify that the tree shown in Figure 2.4 is the 

elimination tree of the matrix L shown in Figure 2.3. 
One of the many uses of elimination trees in sparse matrix computation is the anal- 

ysis of column dependencies in sparse Cholesky factorization. (A survey of elimination 

trees and their applications in sparse matrix computations is contained in [22].) A key 

observation [21,26] is that  Strucl(L,,,) C T[ j ] ;  that  is, every k E Struct(L,,*) is a 

descendant of j in the elirnination tree. Of course, column j of L cannot be completed 

until all columns in Struct( LJ,*) have been completed. Recursive application of this ob- 
servation to  the descendants of j demonstrates that  cnliimn j of L cannot be completed 

iiritjl the columns associated with all descendants of j (i.e., all members of 7 [ j ]  - { j } )  

have been completed. Moreover, L,,J does not depend on any other columns. Hence, 

columns i and j are independent if and only if 'I [i] and 7 [ j ]  are disjoint subtrees. For 
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AA 
Figure 2.4: Elimination tree for the matrix shown in Figure 2.3. 
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example, column 41 in Figure 2.4 depends on columns 22 -- 40, and depends on no 

other columns of the matrix. Columns 41 and 21 are independent because 7[41] and 

?-[all are disjoint sirbtrees. 

2.4. Parallel sparse Cholesky factorization 

We now describe a n  algorithm for shared-memory multiprocessor systems that exploits 

these two sources of parallelism. (The algorithm was introduced in [15].) The task 

of computing column L,j is referred to as a column task in the computation and is 

denoted by T c o l ( j ) .  More precisely, 

TcoE(j) := {cmod(j,  k) 1 k E S t ~ u ~ t ( L , , j ) }  U { c d i u ( j ) } .  

The parallel algorithm maintains a pool of column tasks, and each processor will be 

responsible for performing a subset of these column tasks. The assignment of column 

tasks to  processors is dynamic. When a, processor is free, it will get a column task from 

the pool, perform the necessary @mod operations, and then carry out the required cdiv 
operation. When the processor has finished a column task, it will get another column 

task from the pool. Efficient implementation of this dynamic scheduling strategy re- 

quires that  the pool of tasks be made available to  all processors. This is particularly 

appropriate for shared-memory multiprocessor systems. This approach usually resiilts 

in good load balancing, as might be expected. 

The parallel algorithm in [15] is presented in Figure 2.5. A few comments on the 
parallel algorithm are in order. First, note that it is quite similar t o  the algorithm in 

Figure 2.2. Second, we assume that the data  reside in a globally-shared memory so 

that every processor can access the entire set of data. Third, since every processor will 

access the pool of tasks e, popping a column task from Q is a critical section and must 

be performed in a synchronized manner. 

Fourth, updating an index set S, requires another critical section since S, may be 

simultaneously updated by more than one processor. In Figure 2.5, we have used two 

primitives, lock  and unlock, to synchronize this operation. The first primitive, lock,  

sigiials the beginning of a critical section and allows only one processor to  proceed. If 
there is already a processor executing the critical section, a second processor attempting 

to  enter the same section must wait until the first processor has exited the section. 

The second primitive, unlock, signals the end of a critical section, and its execution by 

one processor permits another processor t o  enter the critical section. The number of 
synchronization operations required to maintain the pool of tasks is O ( n ) .  It is easy to  
see that the number of synchronization calls required to update each set "5, is O( lL+\). 
Thus, the total number of synchronization calls required in the parallel algorithm is 

O(lLI). 
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Global initialization: 
Q + {Tcol( l ) ,  TcoZ(2), . . . , TcoZ(n)} 
for j = 1 to n do 

end for 
sj +- e, 

Work performed by each processor: 
while Q # 0 do 

pop Tcol ( j )  from Q 
while column j requires further ernod's do 

if Sj = 0 then 

end if 
lock 
obtain k from Sj 
q +- next ( j ,b )  
if q 5 n then 

end if 
unlock 

end while 
cdiw( j )  

if q 5 n then 
lock 

unlock 

wait until Sj # 0 

s, +- 4 " VI 

cmod(j, I s )  

Q +- ne+,j) 

s, +- s, u {jl 

end if 
end while 

Figure 2.5: A parallel sparse Cholesky factorization algorithm for shared-memory mul- 
tiprocessor machines. 
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3. Supernodal Cholesky factorization algorithms 

Although the results reported in [15] indicated that  the parallel algorithm in Figure 2.5 

achieved good speed-up ratios, the algorithms in Figures 2.2 and 2.5 are far from 
optimal for a t  least two important reasons. First, both the sequential and paraUel 

algorithms are poor at exploiting some of the hardware features available on advanced 

computer architectures, in particular, the pipelined arithmetic units on current vector 

supercomputers, Second, the number of synchronization operations connected with 

critical sections in the parallel algorithm is relatively high. 

In this section, we discuss the notion of supernodes in the Cholesky factor of a 

sparse symmetric positive definite matrix, and show how these supernodes can be used 

to  improve the algorithms in Figures 2.2 and 2.5. In particular, we show how both 

difficulties with the algorithm in [15] can be dealt with by taking advantage of the 
supernodal structure. 

3.1. Notion of supernodes 

In the Cholesky factor of a sparse symmetric positive definite matrix, columns with the 

“same” sparsity structure are often clustered together. Such a grouping of columns is 

referred to as a supernode’. We define a supernode of a sparse Cholesky factor L t o  be 
a contiguous block of columns in L ,  { p ,  p + 1,. . ., p + Q - l}, such that  

Struct(  L*,,) = Struct(L*,,+,-l) u { p  3- 1,. * . , p  + Q --- 11. 

It is quite easy to show that for p 5 i 5 p + Q -- 2, Struet(L,,,) = Str~c t (L , ,~+, . -1)  U 
{ i  + 1,. . . , p +  Q - l}. (For details consult [23,24]). Thiis, the columns of the supernode 

{ p ,  p -t 1, . . . , p 3 q -.- I} have a dense diagonal block and have identical structure below 

row p + q - 1. Figure 3.1 shows a set of supernodes for the matrix of Figure 2.3. 

‘The partition of the columns of E into supernodes is often referred to  as a supernode 
part it ion. 

Apparently, the term “supernode” first appeared in [ 5 ] ,  although the basic idea 

behind the term was used much earlier. For example, the notion of supernodes has 

played an important role in improving the efficiency of the minimum degree ordering 

algorithm [17] and the symbolic factorization process [27]. More recently, supernodes 

have been used t o  organize sparse numerical factorization algorithms around matrix- 

vector or matrix-matrix operations that reduce memory traffic, thereby making more 

eficicnt use of vector registers [3,5] or cache [1,25]. They play such a role in both the 
serial and the new parallel Cholesky factorization algorithms presented in this section. 

Note that  supernode partitions are not uniquely specified in our definition. Indeed, 

the choices of a supernode partition depend heavily on the mazimal sets of contigiious 

‘It is convenient to denote a column L*,, belonging to a supernode by its column index j .  It should 
be clear by context when 3 i s  being used in this manner. 
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Figure 3.1: Fundamental supernodes in the matrix given in Figure 2.3. (Each x and 0 

represents a nonzero in A and a fill in L,  respectively. Numbers over diagonal entries 
label supernodes.) 
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columns that  can be supernodes and from which one or more supernodes can be formed. 
We have used so-called fundamental supernodes in our algorithms. The set K = 
{ p , p  + 1,. . . , p + q - l} is a fundamental supernode if K is a maximal subset of 

contiguous columns that  forms a supernode for which the following holds: for i = I, 
2,. . ., q - 1, the node p 3- i - 1 is the sole child of p -f i in the elimination tree. The 

notion of fundamental supernodes was introduced in [4] and was discussed extensively 

in [23].. The fundamental supernodes for our model problem are shown in Figure 3.1. 
Associated with any supernode partition is a supernodal elimination tree, which is 

obtained from the elimination tree essentially by collapsing the nodes (colurnns) in 

each supernode into a single n ~ d c .  The supernodal elimination tree for the partition 

in Figure 3.1 is shown in Figure 3.2, superimposed on the underlying elimination tree. 

The primary reason for using the fundamental supernode partition in this appli- 

cation was pointed out in [23]: it is the coarsest supernode partition for which the 

supernode dependencies can be observed in the supernodp elimination tree in a man- 

ner strictly analogous to  the way the column dependencies are observed in the nodal 

elimination tree. Consequently, a fundamental supernode partition can be used more 
cleanly and naturally in a parallel factorization algorithm, where data  dependencies 

are of great practical importance. Liu et al. [23] contains a full discussion of this point. 

Givcn the matrix A ,  the supernode partition can be obtained by several means. 

When the ordering of the colurnns and rows of A is a minimum degree or nested 

dissection ordering, the partition can be obtained easily as a natural by-product of 
the reordering step. Otherwise, the supernode partition can be obtained directly from 

the structure of L after the symbolic factorization; it can also be obtained before the 

symbolic factorization using the algorithm given in [23]. 

3.2 Sequential super nodal C holesky factorization 

In this section we describe a left-looking sequential sparse Cholesky factorization al- 

gorithm that exploits the supernodal structure in L. The algorithm is not new; its 
variants have appeared in 151 and [25]. Let K = { p , p +  I,. . . , p + q -  1) be a supernode 

in L. Consider the computation of L+,3 for some j > p + q .- 1. Suppose column A*,J 
has to be modified by L*,, where i E M. It follows from the definition of supernodes 

that  column will be modified by aEI columns of pi. In other words, a column 

j > y + q - 1 is either updated by no column of K or every column of K .  This 

observation has some important ramifications for the performance of sparse Cholesky 

factorization. Loosely speaking, the columris in a supernode can now be treated as 

a single unit in the computation. Since the columns in a supernode have the same 

sparsity structure below the dense diagonal block, modification of a particular column 

j > p 1- q - I by these columns can be accumulated in a work vector using dense 
vector operations, and then applied t o  the target column using a single sparse vector 

operation that  employs indirect addressing. Moreover, the use of loop unrolling in the 
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31 f 
44 

15 

1 2 4 5 8 9 1 1 1 2  

Figure 3.2: Supernodal elimination tree induced by the fundamental supernodes of the 
matrix shown in Figure 2.3. Ovals enclose supernodes that contain more than one 
node; nodes not enclosed by ovals are singleton supernodes. Bold-face numbers label 
supernodes. 
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accumulation, as described in [9], further reduces memory traffic. These issues have 

been addressed in deta.il in [1,3,5,25]. 
In Figure 3.3, we present a siipernodal Cholesky factorization algorithm, which 

is quite similar to the orie in Figure 2.2. In Figure 2.2, Si identifies the columns of 

L needed to  modify A , j  when L * , j  is computed. Incorporating supernodes into the 

algorithm, we exploit the fact that  columns in the same supernode update the same 

set of columns outside the supernode. 'Thus, Si will identify the supernodes needed to  

modify A , j  when L,j  is t o  be computed. In Figure 3.3, we have adopted the following 

notation. Supernodes are denoted by hold capital letters, and in order to  keep the 

notation simple K is to  be interpreted in one of two diflerent senses, depending on the 

context in which it appears. In one context, X is interpreted as the set of columns 

composing the supernode, i.e., K III { p , ; .  + 1 , .  . . , p  + q - 1). In other lines of the 

algorithm, the supernodes are treated as an ordered set of loop indices 1, 2,  . . . , K ,  
. . . , N ,  where K < J if and only if p < p', where p and p' are the first columns 

of K and J ,  respectively. This dual-purpose notation is illustrated in Figure 3.1, 
where the supernode labels are written over the diagonal entries, yet we can still write 

30 = {40,41,42}, for example. We denote both the last supernode and the number of 

supernodes by N .  
SupposeK { p , p + l ,  ..., p + q - I } .  Wheneverj  > p + q - 1  andZj,p+q-l # 0, the 

task cmod( j ,  K )  consists of the operations crnod(j ,  k) where k = p ,  p + 1, . . . , p + q - 1. 
If, however, j E K ,  then c m o d ( j , K )  consists of the operations c m o d ( j , k ) ,  for k = 
p , p  + 1,. . . , j - 1. Suppose L+,e is the last column in a supernode K and let Ij ,e # 0. 
Then nez t ( j ,K)  i s  defined to  be nez t ( j , l ) .  Similarly, we define nez t (K ,K)  to  be 

next(& e). 
To reiterate the advantage of exploiting the supernodal structure of L ,  we note that 

the operation cmod( j ,  K )  for j M can be accumulated in work storage by a sequence 

of dense vector operations (saxpy using the BLAS terminology [19]), a,fter which the 

accumulated column modifications can be applied to  the target column L,,j using a 

single column operation that requires indirect addressing. Execution of the operation 

cmod( j ,  S )  for j E J is even easier, requiring no work storage or indirect addressing. In 

both cases, loop unrolling can be employed to reduce memory traffic, thereby iniprov- 

ing the utilization of pipelined arithmetic units, especially on vector supercomputers. 

These capabilities are not available in the "nodal" Cholesky factorization algorithm in 
Figure 2.2. 

3.3. Parallel supernodal C h ~ l e s k y  factorization 

As far as we know, the first attempt to  parallelize a supernodal Cholesky factorization 

algorithm was described in [as]. Using the notation in Figure 3.3, the basic idea in 
[28] is to  partition the work in cmod( j ,  M) and cmod( j ,  J )  evenly among the available 

processors. This approach is similar to that employed in the LAPACK project [2], 



- 1 5 -  

for j = 1 to N do 

end for 
Sj + 0 

for J = 1 to N do 
for j E J (in order) do 

for K E Sj do 
cmod(j, K )  
q +- nezt( j ,K)  
if q _< n then 

end if 
s, +- s, u W I  

end for 

cd iv ( j )  
end for 
q +- nest (J ,  J )  
if Q 5 a then 

end if 

cmod(j, J )  

s, +- 8, u { J l  

end for 

Figure 3.3: A sequential supernodd Cholesky factorization algorithm. 
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where, in the interest of software portability and reliability, use of miiltiple processors 

occurs strictly within each call to  some computationally intensive variant of a matrix- 

matrix multiply (BLAS3) or matrix-vector multiply (BLAS2) kernel subroutine. Hence 
each call to  the kernel involves a fork-and-join operation. For large dense matrices, 

where the vectors are quite long and each call t o  the kernel routine typically involves 

a substantial amount of work, this approach is quite effective [SI. For sparse matrices, 

however, short vectors and a limited amount of work within a typical call t o  the kernel 

routine make it quite difficult to  implement this approach in an effective manner. 

The performance of the code in [28] apparently suffers from these defects, and the 

stripmining technique used to  distribute the tasks cmod(j, K )  and cmod(j ,  J )  among 

the processors greatly shortens the vector lengths, which is quite detrimental on the 

target machine, a Cray Y-MP multiprocessor. 

In this section, we describe a different way t o  parallelize the supernodal Cholesky 

factorization algorithm in Figure 3.3. Our parallel version, shown in Figure 3.4, exploits 

far more of the potential parallelism than the technique used in [28]. 

A few comments on the algorithm in Figure 3.4 are in order. First, note that a 

supernode J is inserted into S,, where q = n e z t ( J , J ) ,  only after the last column of 

J has been completed. Thus, when a processor working on column q obtains J from 

S,, alk columns of the supernode J are available for updating column q of A .  This 

is potentially inefficient, as the columns of J are not made available t o  update other 

columns of A as soon as they have been completed. An alternative t o  this approach is 

to  insert J into S, as soon as the first column of the supernode has been completed. 

Of course, when a processor working on column q obtains J from S,, not all columns 

of J are necessarily available. Some flags must be maintained so that the processor can 

determine which columns of J have been completed. This approach attempts t o  make 

every column of L available t o  update other columns as soon as it has been completed. 

We have implemented both approaches. Preliminary tests indicate that  the dityerence 

in performance for these two approaches is extremely smaU. We have chosen to  use the 

approach shown in Figure 3.4 becaiise it is much simpler to describe and it simplifies 

our implementation, especially the incorporation of loop unrolling into the code. 

Another remark concerns the crnod(j, K )  operations. As in the sequential case, 

since all the columns in K share the same sparsity structure below the diagonal entry of 
the last member of Ea‘, these operations can be accumulated in work storage using dense 

vector operations. Extra care is required however when performing the c m o d ( j ,  J )  
operation. Since somc of the columns j’ < j belonging to  J may not be completed, a 
flag has to  be associated with each column to  record the column’s current status. The 

flag for a particular column is set immediately after the column has been completed. 
Since the flag for a particular column is set only by the processor that  computes the 
column, synchronization is not needed. 

The number of lock  and unlock synchronization operations required in the parallel 

supernodal Cholesky factorization algorithm is often much smaller than that required 
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Global initialization: 
Q +-- {Tcol ( l ) ,  Tcol(2), . . . , TcoZ(n)} 
for j = 1 to N do 

end for 
Sj + 0 

Work performed by each processor: 
while Q # 0 do 

pop Tcol ( j )  from Q 
let J be the supernode containing column j 
while column j requires further cmod's do 

if Sj = 0 then 

end if 
lock 
obtain K from Sj 
q + n e z t ( j , K )  
if q 5 n then 

end if 
unlock 
cmod(j,  K )  

end while 

cdiv( j )  
if j is the last column of supernode J then 

wait until Sj # 0 

s, s, u {W 

cmod(j, J )  

q +- n e z t ( J , J )  
if q 5 n then 

lock 

unlock 
S, +- s, " { J 3  

end if 
end if 

end while 

Figure 3.4: A p a r d e l  supernodal Cholesky factorization algorithm for shared-memory 
multiprocessor machines. 
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in the nodal version, as the following discussion shows. One of the key features in 

Figures 3.3 and 3.4 is that  each set S, contains supemodes, rather than columns as it 

did in Figures 2.2 and 2.5. It is easy t o  see in Figure 3.3 that each supernode J has to  be 

inserted into O(lL.,el) sets, where I,*,! is the last column of J .  Consequently, the total 

number of synchronizations required in Figure 3.4 depends on the number of compressed 
subscripts [27], which is basically the number of nonzero entries in the last columns of 

all supernodes. To illustrate the reduction in the amount of synchronization, consider a 

model m x m grid problem using pither a !%point or a 9-point operator. Suppose the grid 

points are labelled using the nested dissection algorithm [13]. It is easy t o  show that the 

number of nonzeros in L is O(m2 log m )  [13] and the number of cornpressed siibscripts 

is O ( m 2 )  [27]. Thus, the amount of synchronization in the parallel supernodal Cholesky 
factorization is reduced by a factor of log m. Experimental results in the next section 

show the reductions in a collection of test problems. 

3.4. Scheduling column tasks 

Our discussion thus far has ignored an iniportant issue: the scheduling of the column 

tasks TcoZ(j) on the available processors. While we have found this issue to  be less 

important on shared-memory machines than it is on distributed-memory machines, 

it nonetheless deserves some attention, and i s  likely to  be of more consequence as 

shared-memory machines with substailtially more processors become available in the 

future. Again, the column-dependency information contained in the elimination tree is 

indispensable in dealing with this problem. 

We use the following simple technique to  schedule the column tasks. Before the 

factorization begins, all columns are placed into the column task pool in the order in 
which they will be selected from the pool. Thus, the pool of tasks can be viewed as a 

static queue. -4 scheduling, then, is essentially the order in which the column tasks are 

placed in the static queue. 

'The goal of the heuristic we use t o  order the column tasks in the queue is t o  exploit 

as much as possible the high-level parallelism available for sets of independent columns. 

Recall that  l 'col(i) and T c o l ( j )  are independent column tasks if i and j belong to  two 
disjoint subtrees in the elimination tree. Consider the example in Figure 2.4. Columns 

associated with the leaves of the elimination tree (1, 2, 4, 5, 10, 11, 13, 14, 22, 23, 2.5, 

26, 31, 32, 34 and 35) are independent, since they belong to  disjoint subtrees. If there 

are enough processors available, the corresponding column tasks can be performed in 

parallel with no delays due lo data-dependencies. Similarly, columns 9, 18, 30 and 39 
are independent. Thus, TcoZ(S), ?'co6(18), Tcol(30) and l'col(39) can be carried out 

concurrently if the column tasks associated with the subtrees '1-[8], 7[17],  7[29] and 

T[38] have already been completed. 'l'he elimination tree therefore provides a natural 

way t o  schedule the column tasks. The order in which the column tasks are placed in 

the work pool Q is generated by a, breadth-first, bottorn-up traversal of a post-ordered 
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version of the elimination tree. The same strategy was used in [15]. 

4. Numerical experiments 

4.1. Test problems 

problem 
BCSSTK13 
BCSSTK14 
BCSSTK15 
BCSSTK16 
BCSSTK17 
BCSSTK18 
BCSSTK23 
BCSSTK24 
BCSSTK25 
BCSSTK29 
BCSSTKSO 
BCSSTK3 1 

BCSSTK32 
BCSSTK33 
NASA1824 
NASA2910 
NASA4704 
NASASRB 

brief description 
Stiffness matrix - fluid flow generalized eigenvalues 
Stiffness matrix - roof of Omni Coliseum, Atlanta 
Stiffness matrix -- module of an offshore platform 
Stiffness matrix - Corp. of Engineers dam 
Stiffness matrix - elevated pressure vessel 
Stiffness matrix -- R.E.Ginna nuclear power station 
Stiffness matrix - portion of a 3D globally triangular bldg 

Stiffness matrix - winter sports arena 
Stiffness matrix - 76 story skyscraper 
Stiffness matrix - buckling model of the 767 rear bulkhead 
Stiffness matrix - off-shore generator platform (MSC NASTRAN) 
Stiffness matrix - automobile component (MSC NASTRAN) 

Stiffness matrix - automobile chassis (MSC NASTRAN) 
Stiffness matrix - pin boss (auto steering component), solid elements 

Structure from NASA Langley, 1824 degrees of freedom 
Structure from NASA Langley, 2910 degrees of freedom 
Structure from NASA Langley, 4704 degrees of freedom 
Structure from NASA Langley, shuttle rocket booster 

Table 4.1: List of test problems. 

Most of the test problems used in our numerical experiments were taken from the 

Harwell-Boeing ‘Yest Collection [ll]. A brief description of the problems is given in 

Table 4.1. Tn the experiments, each matrix was initially ordered using an implemen- 

tation of the minimum degree algorithm due to Liu [20], followed by a postordering 

of the elimination tree [22]. The reason for postordering the elimination tree is that  

the algorithms in [23] were used to compute the fundamental supernodes and the sym- 

bolic factorization, and they require such a postordering. Some statistics, such as thc 

size of each matrix, nonzero counts for both A and I,, number of subscripts required 

to represent the supernodal structure of L (denoted by pL(L)), the numbcr of funda- 

mental supernodes in L ,  and tlie number of floating-point operations’ are provided in 

Table 4.2. 

2A single floating-point operation is either a floating-point addition or a floating-point multiplicatim, 
and is denoted by “flop”. 
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yn-oblcm 
U C S S T K ~ ~  

... 

RCSSTX1.1 
BCSSTK15 
RCSS'rK16 
RCSS'I K17 
BCSSTK 18 
R C: SS'l'K2 3 
BCSSTK24 
BCSS rK25 
I? cs ST K29 
RCSSTK30 
BCSSTK31 
RCS ST K 32 
BCSSTM33 
NASA 1824 
NASA'LY 10 
NASA4704 
NASASRS _________ __ 

~ - 
n 

2,003 
1,806 

4,884 
10,974 
11,948 
3,134 
3,552 

15,439 
13,992 
28,974 
35,588 
44,609 
8,738 
1,824 
2,910 
4,704 

54,870 

3,948 

__ 

____--_I_ -. 
1~41 s_____-.... 

83,885 
63,454 

117,816 
290,378 
428,650 
149,090 
45,178 

159,910 
252,241 
619,488 

2,041,/192 
1,181,416 
2,014,701 

591,904 
39,208 

174,296 
104,'156 

2,6 7 7,324 
-. ............ 

I_I- 

ILI _____-- 
271,671 
112,267 
651,222 
741,1T8 

1,005,859 
662,325 
420,311 
278,922 

1,416,568 
1,694,796 
3,843,435 
5,308,217 
5,246,353 
2,546,802 

73,699 
204,403 
281,472 

11,984,998 - . .___ ___ 

-. ....... ...... 
P ( L )  

28,621 
17,508 
61,614 
50,365 
94,225 

116,807 
49,018 
22,331 

205,5 13 
174,770 
229,670 
330,896 
374,507 
124,532 
12,587 
25,170 
35,339 

592,254 
~ ....... 

____I 

N 
599 
503 

1,295 
69 1 

2,595 
7,438 
1,522 

4 14 
7,288 
3,231 
3,689 
8,304 
6,927 
1,201 

527 
599 

1,245 
8,027 

_____--..__ ___ 
f l o p  ..... .- 

58,550,598 
9,793,431 

165,035,094 
119,100,948 
144,269,031 
140,907,823 
119,155,247 
32,429,194 

283,732,315 
393,045,158 
928,323,809 

2,550,954,465 
1,108,686,016 
1,203,491,786 

5,160,949 
21,068,943 
35,003,786 

4,672,895,526 

Table 4.2: Characteristics of test problems. 

Legend: 

n: number of equations. 

[AI: number of norrzeros in A ,  

I f , / :  number of ~ O A Z ~ ~ O S  in L .  including the diagonal, 

p ( L ) :  number of row subscripts rquired to represent the supernodal structure of L ,  

N :  number of funtlamental supernodes in L ,  

flops: number of floating-point operations required to compute L .  

.... ......... ____ .......... ~ .____ ......... 
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!=I 
7.39 
1.33 

18.59 
14.88 
4.10 
.74 

2.83 
4.53 

Throughout this section, we use c o l f c t  to  refer to  the column-based approach to  
Cholesky factorization used in Figures 2.2 and 2.5. Likewise, we use s u p f c t  to  refer 

to  supernode-based approach used in Figures 3.3 and 3.4. For each approach there 

are two distinct but similar routines: a serial routine and a parallel routine. Thus, 

there are four routines, each implementing one of the algorithms found in Figures 2.2, 
2.5, 3.3, and 3.4. It is worth noting that the serial c o l f c t  routine is a version of 
SPARSPAK’s gsf c t  routine that has been slightly modified for fair comparison with 

the other routines, which were written from scratch. 

1=2 1=4 e=8 
5.98 5.45 5.23 
1.07 1.02 1.00 

15.17 13.93 13.60 
11.94 10.74 10.52 
3.27 3.02 2.95 

.62 .59 .58 
2.32 2.13 2.13 
3.71 3.42 3.37 

4.2. Numerical results on an IBM RS/SOOO 

The primary purpose of Table 4.3 is to  show the impact on performance of various levels 

of loop unrolling in the supf c t  routines. The kernel subroutine called by both the serial 

and parallel supf c t  routines is capable of unrolling the outer loop of a column-oriented 

matrix-vector multiply, as in [9]. (The loop unrolling performs multiple saxpy’s in 

a single loop.) Such loop unrolling cannot be introduced into the co1fc.t routines 

because they are not cognizant of the supernode structure on which the technique 

depends. Loop unrolling levels = 1, 2, 4, and 8 have been tried on several machines. 

problem 
BCSSTK13 
BCSSTK14 
BCSSTK18 
B C SS’T K2 3 
BCSSTK24 
NASA1824 
NASA29 10 
N ASA4704 

colf c t  
9.86 
1.74 

24.02 
19.91 
5.59 

.94 
3.68 
6.09 

Table 4.3: Factorization times in seconds for various levels of loop-unrolling on an IDM 
RS/6000 (model 320). 

Table 4.3 records the results of these tests on an TBM RS/6OOO workstation (model 

320). Our double precision Fortran code was compiled using the IBM Fortran compiler 

xlf with optimization turned on (i.e., x l f  -0). The results for some of the smaller 

problems in our test set are reported in Table 4.3. 
The first thing to note is that s u p f c t  with no loop unrolling (t=l) is significantly 

faster than c o l f c t .  We believe the improvement is due to better use of the cache by 
s u p f c t ,  which is due, in turn, to  the reduction in indirect addressing and increased 

locality of the data references obtained via supernodes and careful attention to cer- 
tain implementation details. On other machines we have tried, supf c t  with no loop 

unrolling generally runs no faster than colf c t ,  and quite often runs slightly slower. 

The improvements due to  loop unrolling shown in Figure 4.3 are fairly typical of 
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what we have observed on other machines, too. While the benefits of loop unrolling 

levels higher than l i d  are minimal on the IBM RS/6000, the point of diminishing 

returns is usually higher on other machines. Experience has shown l=8 t o  be a good 
overall choice for the machines we have worked with. In all subsequent experiments, 

sequential and parallel s u p f c t  use loop unrolling to level l=8 .  

4.3. Nuinerkal results on a Sequent Babncse 8000 

Next, we compare the performance of parallel colfct with that  of parallel si ipfct  on 

a Sequent Balance 8000, a shared-memory multiprocessor with 12 processors and 16 
Mbytes of memory. The parallel routines used Sequent Fortran compiler directives t o  

access the parallel capabilities of the machine and to  perform the necessary synchro- 

nization operations. The Sequent's Fortran preprocessor transformed these compiler 

directives into appropriate Fortran code, which, in turn,  issued the required system 

subroutine calls. The Fortran source code was compiled using the Fortran compiler 

f o r t r an  with the optimization and preprocessing options turned on (i.e., f o r t r a n  

-a4 -mp). 
Table 4.4 contains factorization times and speed-up ratios (enclosed in parentheses) 

for runs on some of the smaller problems in our tcst set. Since we are interested 

primarily in comparing the ability of ralfct and siipfct  to exploit multiple processors, 

each speed-up ratio is formed by dividing the time required for a parallel rim into the 

time required for a serial run of the same method. Note that the serial time is quite 

distinct from the tirue required by the parallel algorithm on a single processor, which 

is always greater. 
....... ......... ......... ......... ___...... ~ 

~ 

problem 
BCSSTK13 

BCSSTK14 

BCSS'TK18 

BCSSTK23 

BCSSTK24 

NASA1824 

NASA2910 

NASA4704 

_. ....... 
I 

method 
1 c o l f c t  

supf c t  
c o l f c t  

I supfc t  
c o l f c t  
supfc t  
c o l f c t  
sup fc t  
co l f  c t  
supfc t  
co l f  c t  

i supfc t  
c o l f c t  
supfc t  
CoPfct 
slipfct  ____. 

serial 
1147.2 
874.4 
195.2 
155.4 

2790.9 
2144.4 
2328.8 
1755.1 
640.3 
493.9 
104.9 
84.8 

417.0 
330.0 
691.9 
539.4 

__I 

p:-l 

1299.4 (0.88) 
878.3 (1.00) 
225.6 (0.87) 
157.5 (0.99) 

3152.3 (0.89) 
2179.3 (0.98) 
2627.9 (0.89) 
1776.8 (0.99) 
733.8 (0.87) 
500.4 (0.99) 
122.4 (0.86) 
86.8 (0.98) 

482.7 (0.86) 
337.0 (0.98) 
791.8 (0.87) 
542.5 10.991 

__ p=2 
652.2 (1.8) 
440.3 (2.0) 
114.2 (1.7) 

79.6 (2.0) 
1589.7 (1.8) 
1097.9 (2.0) 
1322.5 (1.8) 
893.1 (2.0) 
371.6 (1.7) 
250.6 (2.0) 
62.0 (1.7) 

242.5 (1.7) 
167.6 (2.0) 
401.3 (1.7) 
274.6 (2.0) 

43.9 (1.9) 

__ ...... .- 

parallel 
p=4 

333.7 (3.4) 
225.9 (3.9) 

58.7 (3.3) 
40.4 (3.8) 

556.7 (3.9) 
670.2 (3.5) 

188.8 (3.4) 
126.8 (3.9) 
32.0 (3.3) 
22.4 (3.8) 

124.1 (3.4) 
85.5 (3.9) 

204.2 (3.4) 
138.7 (3.9) 

810.0 (3.4) 

447.5 (3.9) 

....... 
p=7 

195.6 (5.9) 
132.0 (6.6) 
34.8 (5.6) 
23.4 (6.6) 

477.3 (5.8) 
326.2 (6.6) 
387.0 (6.0) 
259.1 (6.8) 
110.7 (5.8) 
73.1 (6.8) 
19.4 (5.4) 
13.2 (6.4) 
73.2 (5.7) 
49.5 (6.7) 

119.8 (5.8) 
80.2 (6.7) ..... .- 

I_____...-- 
p = : l O  

93.7 (9.3) 
140.7 (8.2) 

25.5 (7.7) 
16.8 (9.3) 

346.3 (8.1) 
234.8 (9.1) 
275.1 (8.5) 
182.6 (9.6) 
80.2 (8.0) 
52.1 (9.5) 
14.7 (7.1) 
9.6 (8.8) 

53.3 (7.8) 
35.2 (9.4) 
86.6 (8.0) 
57.0 (9.5) 

'Iahle 4.4: Factorization times in seconds (and speed-ups) on a Sequent Balance 8000. 

Comparing the factorization times for the two methods in the last column ( ~ ~ 1 0 )  

clearly indicates the superiority of aupfct  over ccslfct. Indeed the differences in their 

perferrnance on these problems are large and remarkably consistent, ranging from a 
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low of 47.5%’03 to  a high of 57.8%. Two observations largely account for the superior 

performance of supfct .  First, the loop unrolling discussed in the previous section is 

quite valuable on the Sequent also. The effects of loop unrolling are apparent in the 

serial runs, and they are quite consistent among the problems, with improvements in 

performance ranging from a low of 23.7% to a high of 32.7%, The benefits of loop 

unrolling are largely preserved in the parallel implementation of supf ct. 

Second, supf ct’s speed-up ratios are consistently better than colf  ct’s; for colf  c t  

they range from 7.1 to 8.5, and for supfct  they range from 8.8 to 9.6. The “speed-up” 

ratios for parallel runs on a single processor (p=1) suggest that  one of the primary rea- 

sons for colf ct’s inferior speed-up ratios is the high synchronization overhead incurred 

by the method. Since there is no contention for access t o  the critical sections of the 

code when the parallel codes are run on a single processor, it is likely that the relative 

difference in synchronization overhead costs is significantly greater on 10 processors. 

The speed-ups for colf  c t  on 10 processors are nonetheless quite respectable (7.1-8.5). 

4.4. Numerical results on a Cray Y-MP 

Finally, we compare parallel colf  c t  and parallel supf c t  on a Cray Y-MP, a powerful 

vector supercomputer with 8 processors and 128 Mwords of memory. The code run 
on this machine was the same code run on the Sequent, with a few minor changes re- 

quired to  take care of machine-dependent constructs for exploiting parallelism. Again, 

the loop unrolling level used by supf c t  was l=8, and Fortran compiler directives were 

used to  exercise the machine’s parallel capabilities and to  perform the necessary syn- 

chronization operations. The code was compiled using the Fortran compiler cf 77 with 

optimization (the default) and preprocessing options on. (i.e., cf 77 -2u). 
The top half of Table 4.5 reports factorization times and speed-up ratios (enclosed 

in parentheses) for both methods applied to some small problems in our test set. The 

bottom half of the table records performance data for supfct  on the remaining proh- 

lems in our test set. 
Not  surprisingly, supf c t  performs much better than colf  c t  on this machine. Loop 

unrolling is more effective on the Cray Y-MP than it is on the Sequent. Comparing 

the serial runs for the two methods, we find differences in performance ranging from a 
low of 53% to  a high of 132%, due to loop unrolling and reduced indirect indexing in 

supf ct. Similar results have been reported previously in [5]. We also find that supf c t  
parallelizes much better than co l f c t .  For example, on eight processors (y=8) the 

speed-up ratios for supfct  range from a low of 6.0 to  a high of 6.9, which is quite good, 

especially on such small problems. The speed-up ratios for co l f c t ,  however, are very 

poor, ranging from a low of 2.0 to a high of 3.7. As was the case on the Sequent, the 

“speed-ups” obtained on a single processor indicate that the high synchronization costs 

3The base for each percentage is the smaller of the two times. This applies to percentages presented 
later in this section as well. 



- 24 - 

problem ... .- 
BCSSTKl3 

BCSSTK14 

RCSSTKl5 

BGSSTK16 

BCSS'TK17 

BCSSTKl8 

BCSSTIC23 

BCSSTK24 

........ - _ .......... .......... 
parallel ...______ II 

method serial p= 1 
c o l f c t  ,929 1.347 (.Si). 
supf c t  .439 ,493 (.89) 
c o l f c t  .238 ,391 (.61) 
s u p f c t  .156 .185 (.84) 
c o l f c t  2.485 3.471 (.72) 
snpfct  1.071 1.172 (.91) 
c n l f c t  2.444 3.549 (.69) 
supfct 1.067 1.178 (.91) 
c o l f c t  2.712 4.121 (.66) 
s u p f c t  1.373 1.540 (.89) 
c o l f c t  2.288 3.284 (.70) 
s u p f c t  1.314 1.481 (.89) 
c o l f c t  1.755 2.408 (.73) 
s u p f c t  ,798 .879 (.91) 
colf c t  ,674 1.071 (.63) 

.338 1 ,381 (mj 
.- 

s1apfct 
BCSS'rK25 11 s u p f c t  / /  2.580 2.872-(:60T 

.331 (237) 

p=2 
,685 (1.4) 
.249 (1.8) 
.203 (1.2) 
.093 (1.7) 

1.770 (1.4) 
.594 (1.8) 

1.814 (1.3) 
.590 (1.8) 

2.142 (1.3) 
.773 (1.8) 

1.675 (1.4) 
,741 (1.8) 

1.219 (1.4) 
.441 (1.8) 
.551 (1.2) 
.190 (1.8) 

1.602 (1.8) 
3.154 (1.8) 
6.653 (1.9) 
4.249 (1.8) 
3.074 (1.9) 

,069 (1.7) 
.166 (1.7) 
,243 (1.8) 

12.404 (1.9) 

Tzqiq 

p=4 
.379 (2.5) 
.128 (3.4) 
.126 (1.9) 
.048 (3.2) 
.962 (2.6) 
.299 (3.6) 
,995 (2.5) 
,299 (3.6) 

1.223 (2.2) 
.392 (3.5) 
.928 (2.5) 
.382 (3.4) 
.652 (2.7) 
.224 (3.6) 
.329 (2.0) 
.096 (3.5) 
.731 (3.5) 
,810 (3.6) 

1.590 (3.7) 
3.330 (3.8) 
2.134 (3.6) 
1.539 (3.8) 

,036 (3.2) 

.124 (3.5) 
6.202 (3.8) 

.os4 (3.4) 

p=6 
.314 (3.0) 
.089 (4.9) 

.033 (4.7) 

.768 (3.2) 

.204 (5.2) 

.834 (2.9) 

1.104 (2.5) 
.267 (5.1) 
.767 (3.0) 
.265 (5.0) 
.514 (3.4) 
.153 (5.2) 
.302 (2.2) 

____...-_ .065 (5.2) 
.504 (5.1) 

1.073 (5.4) 
2.249 (5.6) 
1.442 (5.4) 
1.040 (5.6) 

.025 (4.6) 
,058 (4.9) 
.085 (5.0) 

4.179 (5.6) 

.... 

.121 (2.0) 

.202 (5.3) 

.547 (5.4) 

p=8 
.301 (3.1) 
,069 (6.4) 

.026 (6.0) 

.725 (3.4) 

.157 (6.8) 

.812 (3.0) 
,154 (6.9) 

1.094 (2.5) 
,206 (6.7) 
,729 (3.1) 
,213 (6.2) 

.125 (6.4) 

.301 (2.2) 

.050 (6.8) 

.394 (6.5) 

.421 (7.0) 
,815 (7.1) 

1.706 (7.4) 
1.100 (7.1) 
.788 (7.4) 
,019 (6.0) 
.045 (6.4) 
,065 (6.6) 

3.164 (7.4) 

.121 (2.0) 

,473 (3.7) 

Table 4.5: Factorization times in seconds (and speed-ups) on a Cray Y-MP. 

incurred by calfct seriously degrade its parallel performance. Indeed, OD this machine 

the overhead appears t o  he considerably higher than it was on the Sequent. This high 

overhead combined with the fast floating-point computational rates on this machine, 

probably account for most of the degradation in parallel performance of c o l f c t .  

The performance of s u p f c t  on the large problems in the bottom half of the table 

is consistently good. Tgnoring the three smallest problems in this portion of the table 

(NASA1824, NASA2910, and NASA4704), speed-up ratios range from a low of 6.5 to  a 

high of 7.4. Qn six out of seven of these problems the speed-up ratio is 7.0 or greater, 

wilh the 6.5 speed-up ratio reserved for the problem requiring the least work, namely 

BCSSTK25. 
'Table 4.6 conipares the performance of supf ct with the parallel supernodal factor- 

ization algorithm used in [28], which we will designate as supfct-SWY. The performance 

figures are expressed ir l  hfAops4, as is commonly done for vector supercomputers such 

as the Cray Y-MP. We report the performance of both codes on those problems in our 

test set for which results for supfct-SVY were available t o  us. 'The performance data  
for supfct-SVY were obtained from an  unpublished manuscript [as] .  

Consider the results obtained on 8 processors (p:8). On six of the twelve prob- 

' Mflops (megaflops) are millions of floating-point operations per second. Gflops (gigaflops) are 
billions of floating-point operations per second. 
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method 
supf ct  
supf ct-SVY 
supf c t  
supf ct-SVY 
supf C t  

supfct-SVY 
supf ct  
supf ct-SVY 
supf c t  
supf ct-SVY 
supf c t  
supf ct-SVY 
supf c t  
supf ct-SVY 
supf ct  
supf ct-SVY 
supf c t  
supf ct-SVY 
supf c t  
supf ct-SVY 
supf c t  
supfct-SVY 
supf ct  
supf ct-SVY 

problem 
BCSSTK15 

BCSSTK16 

BCSSTK23 

BCSSTK24 

BCSSTK30 

BCSSTK31 

BCSSTK32 

BCSSTK33 

NASA1824 

NASA2920 

NASA4704 

NASASRB 

serial 
154.1 
197.8 
139.7 
190.8 
149.3 
191.6 
95.9 

139.4 
159.6 
212.2 
202.3 
251.4 
142.6 
193.5 
206.4 
258.4 
45.3 
64.3 
73.4 
97.5 
81.6 

117.0 
198.3 
250.6 

Pa 
p=4 
551.9 
301.1 
498.6 
287.5 
531.9 
293.3 
337.8 
168.2 
583.8 
350.0 
766.0 
566.3 
519.5 
29 1.4 
782.0 
593.1 
143.3 
69.8 

250.8 
121.6 
282.3 
143.5 
753.4 
531.6 

del 
p=8 

1051.2 
320.8 
968.2 
297.4 
953.2 
315.1 
648.5 
168.7 

1139.0 
375.0 

1495.3 
689.2 

1007.9 
307.0 

1527.3 
717.2 
271.5 
69.8 

468.1 
121.4 
538.4 
143.5 

1476.9 
625.2 

Table 4.6: Factorization computational rates (Mflops) on a Cray Y-MP. 
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lems, supf ct performs the factorization at over a Gflop, with highs of 1.48 Gflops on 

NASASRB, 1.50 Gflops on SCSSTK31, and 1.53 Gflops on BCSSTK33. For two oth- 

ers problems, the computational rake is nearly a Gflop: .97 Gflop on RCSSTKIG and 

.95 Gflop on BCSSTX23. Thus, for 8 out of 12 of the problems, supfct computed 

the factorization a t  nearly a GAop or more. Table 4.2 indicates that  the remaining 

four problems (NASA182.1, NASA2910, NASA4704, and BCSSTIC24) are quite small. 

Moreover, in Table 4.5 we see that  serial supfct  requires less than half a second to  

factor any of these matrices. 

The performance of supfct-SVY is much poorer due to  the problems with this 

ayproa,ch mentioned earlier in Section 3.3. The code runs a t  less than a Gflop on 

every problem, despite having significantly higher serial efficiency due to  assembly 

language programming of the compute-intensive kernel routines and other machine- 

specific optimizations. Our parallel implementation of supf c t  is a Fortran 77 code, 

with no machine-specific optimizations. 

5 .  Concluding remarks 

We have implemented a new parallel sparse Cholesky factorization algorithm for shared- 

memory multiprocessors. This new left-looking algorithm uses techniques from [5] and 

[15]: it uses supernodes to  reduce indirect addressing and memory traffic [5], and 
it decomposes the computation into column tasks Tcol ( j )  and schedules these tasks 

dynamically on the available ~ T ~ C ~ S S Q I - S  [1,5]. Incorporation of supernodes into the 

algorithm in (151 reduces the synchronization overhead required to  manage the row 

structure sets S, from O(lL1) to O ( p ( L ) ) ,  where p ( L )  is the number of row subscripts 

required to represent the supernodal structure of L. in practice, p(L> is often much 

smaller than [Ll ;  consequently, contention for the critical sections i s  likely t o  be much 

higher in c o l f c t  than in supfc t .  Since the algorithms use a single lack variable for 

the critical sections, the sections are executed serially. Thus, the serial component of 

s u p f c t  is in practice much smaller than that of c o l f c t .  Our tests indicate that this is 

the single most important factor contributing t o  the new algorithm’s superior parallel 

performance. 

Right-looking sparse Cholesky algorithms (i.e., multifrontal algorithms) for shared- 

memory multiprocessors have appeared in [6,10,29]. These algorithms exploit supern- 

odes in much the same way that the new parallel left-looking algorithm does. Par- 

allelizing the multifrontal algorithm however is considerably more complicated than 

parallelizing the simpler left-looking algorithms. For instance, parallel multifrontal 

Cholesky for shared-memory machines can no longer use a simple and efficient stack to  

manage the “update” matrices required by the method. Methods for dealing with this 

fragmented component of work storage are necessarily more complicated and storage 
illefficient [10,29]. On the other hand, supfc t  requires only a modest amount of work 

storage, which can be determined before the numerical factorization begins. Break- 
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ing multifrontd Cholesky factorization into tasks and scheduling these tasks on the 

available processors is also more complicated than it is for the left-looking algorithms. 

The additional complexity has lead to parameterized implementations, where the per- 

formance of the code is quite sensitive to  parameter selection (see [lo] and especially 

There are however significant advantages enjoyed by the multifront a1 method; e.g., 

it is a superior out-of-core method and is better able to  improve performance by loading 

and reusing data in cache. It appears to  us that the rnultifrontal method very likely will 

always be the method of choice for out-of-core sparse Cholesky factorization. However, 

we think that a block-to-block left-looking algorithm may be quite competitive with the 

multifrontal method at  exploiting cache to  improve performance. Such an algorithm 

would be built around a crnod(J,  K )  operation that  updates the appropriate subset of 
columns from supernode J with all the columns of the updating supernode K .  With 

the rising importance of cache memory on recent supercomputers and workstations, 

exploring this approach on current serial and parallel machines is a promising area for 

fut w e  work. 
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